Algebra II
 8-5
 Remainder and Factor Theorems

Factor Theorem -
When dividing $\frac{P(x)}{x-a}$, if the remainder is equal to zero, then $x-a$ is a
factor of $P(x)$, and $\{a\}$ is a root of $P(x)$.
synonyms of root
\rightarrow solution, x-intercept, or
Use the factor theorem to determine whether the binomial is a factor of $P(x)$.
9) $x+1 ; P(x)=x^{7}-x^{5}+x^{3}-x$

Yes, $x+1$ is a factor

Find a polynomial equation with integral coefficients that has the given roots.

$$
\text { 21) } \begin{aligned}
& \{1,2,-3\} \\
& (x-1)(x-2)(x+3)=0 \\
& \left(x^{2}-2 x-1 x+2\right)(x+3)=0 \\
& \left(x^{2}-3 x+2\right)(x+3)=0 \\
& x^{3}-3 x^{2}+2 x+3 x^{2}-9 x+6=0 \\
& x^{3}-7 x+6=0
\end{aligned}
$$

$$
\begin{gathered}
x-1=0 \quad x-2=0 \quad x+3=0 \\
x=1, x=2, x=-3 \\
\{1,2,-3 \xi
\end{gathered}
$$

Remainder Theorem -
When dividing $\frac{P(x)}{x-a}$, the remainder will always equal $P(a)$.
(pg 375)
Use synthetic substitution to find $P(c)$ for the given polynomial for the given c.

1) $P(x)=x^{3}-2 x^{2}-5 x-7 ; c=4$

A root of the equation is given. Solve the equation.

$$
\begin{aligned}
& \text { 17) } x^{3}+3 x^{2}-3 x-9=0 ;-3 \quad\{-3, \pm \sqrt{3}\} \\
& x^{2}-3=0 \quad \text { Quadratic } \\
& \sqrt{x^{2}}=\sqrt{3} \\
& |x|=\sqrt{3} \\
& x= \pm \sqrt{3}
\end{aligned}
$$

Solve each equation given the two indicated roots.
29) $x^{4}-3 x^{3}-8 x^{2}+12 x+16 \quad\{-1,4, \pm 2\}$

p9 375
2-32even

